32 research outputs found

    Species Abundance Patterns in Complex Evolutionary Dynamics

    Full text link
    An analytic theory of species abundance patterns (SAPs) in biological networks is presented. The theory is based on multispecies replicator dynamics equivalent to the Lotka-Volterra equation, with diverse interspecies interactions. Various SAPs observed in nature are derived from a single parameter. The abundance distribution is formed like a widely observed left-skewed lognormal distribution. As the model has a general form, the result can be applied to similar patterns in other complex biological networks, e.g. gene expression.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Statistical mechanics and stability of a model eco-system

    Full text link
    We study a model ecosystem by means of dynamical techniques from disordered systems theory. The model describes a set of species subject to competitive interactions through a background of resources, which they feed upon. Additionally direct competitive or co-operative interaction between species may occur through a random coupling matrix. We compute the order parameters of the system in a fixed point regime, and identify the onset of instability and compute the phase diagram. We focus on the effects of variability of resources, direct interaction between species, co-operation pressure and dilution on the stability and the diversity of the ecosystem. It is shown that resources can be exploited optimally only in absence of co-operation pressure or direct interaction between species.Comment: 23 pages, 13 figures; text of paper modified, discussion extended, references adde

    Rank abundance relations in evolutionary dynamics of random replicators

    Full text link
    We present a non-equilibrium statistical mechanics description of rank abundance relations (RAR) in random community models of ecology. Specifically, we study a multi-species replicator system with quenched random interaction matrices. We here consider symmetric interactions as well as asymmetric and anti-symmetric cases. RARs are obtained analytically via a generating functional analysis, describing fixed-point states of the system in terms of a small set of order parameters, and in dependence on the symmetry or otherwise of interactions and on the productivity of the community. Our work is an extension of Tokita [Phys. Rev. Lett. {\bf 93} 178102 (2004)], where the case of symmetric interactions was considered within an equilibrium setup. The species abundance distribution in our model come out as truncated normal distributions or transformations thereof and, in some case, are similar to left-skewed distributions observed in ecology. We also discuss the interaction structure of the resulting food-web of stable species at stationarity, cases of heterogeneous co-operation pressures as well as effects of finite system size and of higher-order interactions.Comment: 12 pages, 14 figures; text amended, minor corrections/modifications to figure
    corecore